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Potpuno diskretizovane formulacije jednacine toplotne provodljivosti na bazi bezmreZne
Fragile Points metode (FPM) i razli¢itih algoritama zarjesavanje ODJ
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Abstract: According to recent studies, the Fragile Points Method (FPM) has emerged as a highly promising technique
for addressing problems related to heat conduction analysis. This paper further develops and extends the investigation
of FPM by implementing and comparing several explicit and implicittime integration schemesfor solving the resulting
systems of ordinary differential equations (ODEs). In total, six fully discrete formulations of the general heat
conduction equation are derived and presented. The study includes a detailed assessment of each algorithm’s
computational complexity, execution time, and relative numerical accuracy, providing a comprehensive evaluation of
their performance. The convergence and stability of the FPM approach were verified through multiple benchmark
problems with known analytical solutions in both one and two dimensions. Furthermore, it was demonstrated that the
presence of non-homogeneity and anisotropy in the analysed media does not introduce additional difficulties for the
method. When compared with explicit techniques, the implicit formulations proved to be more efficient for stiff
problems, achieving stable solutions while maintaining comparable computational costs.
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Apstrakt: Skorija istraZzivanja su pokazala da se Fragile Points metoda (FPM) pokazala kao veoma perspektivna
tehnika za rjesavanje problema koji se odnose na analizu provodenja toplote. Ovaj rad za cilj ima dalji razvoj i Sirenje
istrazivanja u pravcu primjene FPM za konkretan problem uvodenjem i medusobnim poredenjem nekoliko eksplicitnih i
implicitnih Sema za vremensku integraciju kako bi se rijesio rezultujuci sistem obicnih diferencijalnih jednacina (ODJ).
Ukupno je razvijeno i predstavijeno sest potpuno diskretizovanih formi opste jednacine provodenja toplote. Istrazivanje
obuhvata detaljnu procjenu racunske efikasnosti, veemena izvrsenja koda i relativne numericke preciznosti za svaki od
algoritama, pruzajuci sveobuhvatmu procjenu njihovih karakteristika. Konvergentnost i stabilnost pristupa na bazi FPM
su verifikovani rjeSavanjem nekoliko problema sa poznatim analitickim rjeSenjima u jednoj i dvije dimenzije. Pored
toga, pokazano je da prisustvo nehomogenosti i anizotropnosti analiziranih sredina ne predstavlja nikakvu prepreku za
posmatranu metodu. U poredenju sa eksplicitnim tehnikama, implicitne metode su se pokazale kao efikasnije za tzv.
krute (stiff) probleme, dajudi stabilne rezultate uz ocuvanje niskih racunskih troskova.

Kljucne rijeci: Fragile Points metoda, jednacina provodenja toplote, obicna diferencijalna jednacina

1 INTRODUCTION restricted to simplified models that do not always
accurately represent the real behaviour of the
system. To address these limitations, numerous
numerical methods for solving PDEs and

Although many physical processes are well
described by partial differential equations (PDEs),
analytical solutions are unavailable for most of
them. Moreover, analytical results are often
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performing simulations have been developed over
the past several decades.

One of the more recent approaches is the
Fragile Points Method (FPM), introduced by
Dong et al. [1]. While retaining the essential
advantages over the classical mesh-based
methods, it also offers computational
improvements compared to other meshless
approaches. Its main feature lies in the use of
discontinuous polynomial trial functions, which
allow for easy, precise, and efficient integration
using simple Gaussian quadratures.

So far, the FPM has shown great potential for
solving various types of problems, including heat
conduction problems, as reported in several
studies [2—6].

This paper extends previous research by
focusing on the compatibilty of FPM with
various explicit and implicit solvers, as well as on
the analysis of their accuracy, computational cost,
and real computational times. Building upon the
semi-discrete formulation presented in [2,6], this
work develops fully discrete forms using three
explicit and three implicit methods. The
performance of the proposed approaches, along
with a detailed comparison between explicit and
implicit solvers combined with FPM, represents
the main focus of this study.

2 GOVERNING EQUATION, BOUNDARY
CONDITIONS AND INITIAL CONDITION

The partial differential equation (PDE)

governing  transient  heat  conduction in
anisotropic, nonhomogeneous media is given by:
Ju
peo =V kv +0Q, 1)

where: p(r) is density, c(r) is a specific heat
capacity, u(r,t) is temperature field, k(r) is a
thermal conductivity tensor, Q(r,t) is a density of
heat sources, V is a gradient operator, r is a
position vector, and ¢ is time.

In order to complete the equation (1),
boundary conditions have to be specified.
Dirichlet and Neumann conditions are typical for
heat conduction equation, and given in the
following forms:

U= gp, r €lp,

[kVu] 'n=g-n=gy, rely, @)

where: n represents the outer normal vector of the
domain.

The initial condition is given as:

u(r, t)]e=o = u(r,0). 3)

3 SEMI-DISCRETE FORM OF THE
GOVERNING EQUATION BY
MESHLESS FRAGILE POINTS
METHOD

In order to obtain the full-discrete form of the
governing equation, it has to be noted that one
approach has to be employed in order to deal with
the discretisation in the space domain, while some
other ODE solver has to be introduces in order to
deal with the discretisation in the time domain.
One of the latest approaches used for the
discretisation of the heat conduction equation in
the space domain is meshless Fragile Points
Method (FPM). Its potential for solving those
kind of problems was firstly explored through
papers [2,3], while further researches and analyses
given in [5] confirmed its superiority for this Kind
of problem in comparison to any other numerical
approach known so far. That is why the FPM,
specifically the FPM-Primal, was also chosen as
the starting point of this study to derive the semi-
discrete form of the Eqg. (1).

Trial and test functions are required to support
the semi-discrete form. Although different choices
are possible, in this research the test functions are
chosen to be identical to the trial functions. This
approach ensures the symmetry of the matrices.

One of the main advantages of the Fragile
Points Method (FPM) is the ability to employ
piecewise polynomial functions as trial functions,
with the key benefit being the ease and accuracy
of numerical integration using simple Gaussian
quadratures. In this study, as low as first-order
polynomial is used, providing improved
computational  efficiency  while  maintaining
accurate results.

To define the trial functions, the domain must
be divided into a number of non-overlapping
polygons (subdomains) that together cover the
entire  domain, with exactly one discretization
point located within each subdomain (Fig. 1).
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Figure 1 — Domain partitioning into subdomains in
FPM

Each subdomain has its own shape function,
defined such that the trial function at any point
within the subdomain depends on its position

Z f pcv—dﬂ+z f(kVuh) -VodQ — Z f(k[[uh]]) {vv3idr —

EEQ E EEQE e€ly e

Zf( V) — 2 [[uh]])>

e€lp e
vadQ+ Zf
EEQE e€lp e

where: wu;, is the trial function, v is the test
function, [ ] and { } denote the jump and
average operators, respectively, n, and np are the
penalty parameters on internal and Dirichlet
boundaries, respectively, and h, is edge-size
parameter ([1,2,7]).

Following [1,2], the trial function can be
expressed in the following form:

uy (r) = Nu, r € E,, (5)

while its gradient at P, point takes the following
shape:

Vulp, = Bu, (6)
where:
N=@-1)"™B+[1 0 0lix(m+1)»
-1 1 0 - 0
B=(aTa) aT|"t O 1 0 :
-1 0 0 Umxn+1)
A=[f1—T, T,—T, = TIp—1]T,

[v]dl — Z f Vu,

i gon)]| )~ (oo kvl ) ar +

vector, the function value at a specific subdomain
point (point P, for subdomain E, in Fig. 1), and
the gradient of the function at that specific point
(By)- On the other side, the gradient of the
function at the specific point (F,) depends on the
function values at the surrounding (neighbouring)
points (for B, these are the black points in Fig. 1).
All that make the FPM truly meshless.

Process of forming of semi-discrete form of
the general heat conduction equation on the basis
of FPM is explained in details in [2,6]. Following
on [6], final form of the general heat conduction
equation has the following shape:

f{uh}[[va]]dl"

e€lp e

- Z—Zuhn)]] wir (@)

Z f gnvdrl,

eely e

u=[U u - Up]l

By introducing the heat conduction and
stiffness matrices, Eq. (4) can be rewritten in a
compact form:

D gt ) Ky + Ky +Kp)u
()
=) (Fg +Fp + Fy)
or more simply:
Ci+ Ku=F, (8)

where: C represents the global heat capacity
matrix, K is the global thermal conductivity
matrix, u is the vector of nodal temperatures, 0 is
a time derivative vector of the nodal temperatures,
and F is the heat flux vector. C and K are constant,
while the vector F can generally vary, depending
on the heat sources and boundary conditions.

After introducing the trial and test functions,
given by Eq. (5), into the semi-discrete form of
the governing Eq. (1), expressed by Eq. (4), the
individual terms of the Eq. (7) can be obtained at
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the subdomain level in a way that is presented in
details in [2,6].

The convergence and stability of the FPM for
solving the general heat conduction equation have
been demonstrated in previous studies (see
[3,5,6]).

4 FULL-DISCRETE FORMS OF THE
GOVERNING EQUATION BY
MESHLESS FRAGILE POINTS
METHOD AND VARIOUS ODE
SOLVERS

To complete the numerical solution, i.e., to
obtain the fully discrete form of the heat
conduction  equation in  anisotropic, non-
homogeneous media, ODE (8) must be solved. A

variety of approaches can be used. One such
method is the Local Variational Iteration Method
(LVIM), developed in [8], which has been shown
to be highly compatible with FPM in [3,5].

For this research, however, three explicit and
three implicit solvers were considered, namely:

e Forward Euler (FE),

e Runge-Kutta 4th order (RK4),

e Adams-Bashforth 3th order (AB3),

e Backward Euler (BE),

e Trapezoidal Rule (TR) and

e Adams-Moulton 3th order (AM3).

Based on the concept of these six methods in
combination with ODE (8), the fully discrete
forms of the governing equation are summarized
in Table 1.

Table 1 — The full-discrete forms of the governing equation obtained using FPM and six ODE solvers

FPM + Forward Euler
(FE)

W, = U, +AtG,

FPM + Runge-Kutta 4™ order

At
Uy, =, +—C1(k, + 2k, + 2k; + k,)

6

FPM + Adams-Moulton
method 3th order
(AM3)

k;, =F,, —Ku,
g (RK4) K, = F,,05n — K(u,, + 0.5Atk,)
S K = F,00n — K(u,, + 0.5AtK,)
u K, = F.0 — K(u,, + Atks)
W, = u, +AtG,
FPM + Adams-Bashforth _ (36 )
method 3th order Wtz = Wppg + = (3G = Gy
AB3 At
( ) U3 = Uppyp + 12 (23Gm+2 —16G44 + SGm)
FPM + Backward Euler U gy = Uy + AtGiyg
(BE) u,,,; = (E+ AtCK)™1(u,, + AtC™'F, ;)
256, +6,0)
u =u,+—
FPM + Trapeze Rule m*; S \ m+i
- t
+ (TR) Upy1 = <E +At§C_1K) <um+7(Gm+C_1Fm+1)>
'S
?E:_ U1 = U, +AtG,,,, (like BE)

At .
um+2 = um+1 + ? (Gm+1 + Gm+2) (Ilke TR)
t
U3 = Uy + E (_Gm+1 + 8Gm+2 + 5Gm+3)

At
Wpi3 = Upyo + E (_Gm+1 + 8Gm+2 + 5C_l(Fm+3 - Kum+3))

5 -1 At
W3 = (E + Atﬁc_1K> (um+2 + 3 (—=Gyp1 +8Gppyp + 5C‘1Fm+3)>

38



R. Grujici¢

At is a time step
u,, is vector of temperatures in specified nodes at t,,

E is a unit matrix of size n x n
G,, = C"'(F,,— Ku,,)

u,,,, is vector of temperatures in specified nodes at t,,,, = t,, + At

5 TIME COMPLEXITY OF THE
PROPOSED ALGORITHMS

The formation of the C and K matrices is not
time-consuming in FPM. By analysing the
procedure used to construct them, it can be
concluded that their formation can be performed
with an approximate complexity of 0(n), where n
is the number of nodes, i.e., the number of domain
points. However, the inversion of the C matrix can
be time-consuming. Using Gaussian elimination,
this can be achieved with a complexity of 0(n3).
However, since FPM vyields a positive definite,
symmetric, sparse, and well-structured matrix,
advanced solvers such as sparse Cholesky or
multigrid methods can be applied, drastically
reducing the computational cost — sometimes even
approaching linear complexity with respect to n.

In all six algorithms listed in Table 1, the
multiplication of an n X n matrix with a vector of
length n is the most computationally intensive
operation within each time step, with complexity
0(n?) per step. Consequently, the overall
complexity of all six approaches can be roughly
estimated as 0 (n,n?), where n, is the number of
time steps. This is more computationally
demanding than the inversion of the C matrix,
regardless of the number of time steps, and is
therefore considered the dominant operation.

However, in practice, the six algorithms don’t
have identical computational costs. For example,
in Euler methods, the multiplication of an nx n
matrix with an n X 1 matrix occurs twice per time
step, while in the 4th-order Runge-Kutta method
it occurs five times, so the latter is expected to be
approximately 2.5 times slower.

6 NUMERICAL EXAMPLES

The capabilities of FPM are demonstrated
through several numerical examples in 1D and
2D, for which analytical solutions are available in
the literature. None of them involve internal heat
sources. For each example, a comparison of the

six ODE solvers was performed in terms of
accuracy, computational time, and ability to solve
the problem. Point distributions were mostly
uniform, while both the number of points and the
number of time steps were varied. Accuracy was
estimated based on the relative error value
calculated using the Lebesgue norm:

llw — ¢ll2

— — 2 = 9
o=, gl = || [ gran) ©

Q

Previous studies [3,6] provide an overview of
the choice of penalty parameters. In these works,
1, values were estimated through a number of
examples, considering a wide range of penalty
parameters values, typically from 10° to 10°.
Based on this previous experience, for all 1D
problems, penalty parameters of 5, = 100 and
np = 500 were used, whereas for all 2D
problems, the values 7, = np = 2 were adopted.

Apart from the penalty parameter itself,
stabilization is influenced by the dimensionality
of the element boundaries. In 1D, boundary
reduces to point, providing very little “contact
area” for flux stabilization. Consequently, higher
penalty parameters are typically required in 1D
problems compared to 2D or 3D.

As for the edge size parameter h,, a unit value
was taken for 1D problems, while the boundary
length was taken for 2D problems.

All codes were executed on a PC of the
following specifications: Intel(R) Core(TM) i3-
9100T CPU @ 3,10 GHz; RAM 8,00 GB; Intel(R)
UHD Graphics 630.

The first example considers 1D transient heat
conduction through a homogeneous medium with

€ [0,1]. The thermal diffusivity is set to 1. The
initial and mixed boundary conditions are
specified as follows: u(x;0) = 1,Vu(0;t) =
0,u(1;t) = 0.

The analytical solution is provided in [9].

39



Journal of Engineering and Management Vol 3 No 2 (2025)

Fig. 2 illustrates the comparison between the
analytical solution and the numerical solution
obtained using FPM in combination with the
Backward Euler scheme for the first problem at
several time points, with 50 uniformly distributed
domain nodes and a time step of 10 Table 2
presents the values of r, error averaged per time
step within the interval t € [0,1].

As can be seen from Fig. 2, this problem is
stiff. Consequently, explicit methods struggle to
produce accurate results unless a very large
number of time steps is used relative to the
number of nodes. In contrast, implicit methods
can provide highly accurate results even with a
small number of time steps, although accuracy
improves further as the number of time steps
increases. Table 2 also confirms that the
computational times for the FE and BE methods
are roughly the same and lower than that of the
RK4 method.

1.2

——analytical

1

0.8+

0.6+

0.4,

0.2+

0 0.2 0.4 0.6 0.8 1

Figure 2 — Comparison of analytical and FPM
solutions for the first example

Table 2 — The average values of ry error and
computational times for the first example

3.1-1073.0-1073.0-1074.4-1013.6-10713.4-107
2 2 2 3 4 4

T
TR
CT| 0.07 | 0.10 | 0.41 | 0.08 | 0.43 | 3.28
3.0-1073.0-107 3.4-10]
"o - 2 2 - - 4
IAM3
CT| - 0.11 | 0.44 - - 3.95

CT is computational time in seconds

n 10 100
n, | 10° | 10* | 10° | 10° | 10* | 10°
| . [po:top.o:1o] ~ [3.2-10]
FE 0 2 2 4
cT| - |011|o047| - - | 3.63
- . Po;10B0:10] . 2o
RK4|°
CT| - | 013|067 | - - | 4.26
] _ pojio] . ] ]
AB3|°
cT| - - o045 | - - -
3.1-10]3.0-1013.0-10]2.2-10]5.2-103.6 10’
To 2 2 2 3 4 4
BE
CT| 0.06 | 0.09 | 0.41 | 0.09 | 0.47 | 3.48

In the second 1D problem, transient heat
conduction through a homogeneous media in the
domain x €[0,1] is analysed. The thermal
diffusivity is set to 1. In this case, both boundaries
are adiabatic (zero-Neumann boundary condition).
The initial condition is specified as follows:

1

0, 0<x<—

u(x; 0) = 1 2,
2x,5<xS1

The analytical solution is provided in [10].

Fig. 3 shows the comparison between the
analytical solution and the numerical solution
obtained using FPM in combination with the
Euler Forward scheme for the second problem at
several time points, with 50 uniformly distributed
domain nodes and a time step of 10 Table 3
presents the values of r, error averaged per time
step within the interval t € [0,1].

2

analytical
o FPM

1.5}

0.5+

Figure 3 — Comparison of analytical and FPM
solutions for the second example

Table 3 — The average values of r; error and
computational times for the second example

n 10 100
n, | 10® | 10* | 10° | 10° | 10" | 10°
N 6.0:106.0:101 _ Lo
FE
CT| - |017]036| - - | 243
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7 ) 6.0;10'6.0‘;,10' ) ) 1.0;110'
RK4
CT| - 0.16 | 0.55 - - 2.97
7 ) 6.0;10'6.0510' ) ) 1.1;‘10'
AB3
CT| - 0.12 | 0.30 - - 1.30
6.4-1016.0-1016.0-1076.8-1071.7-1071.2-107
BE To 3 3 3 4 4 4

CT| 0.06 | 0.11 | 0.29 | 0.10 | 0.31 | 2.24
6.0-1076.0-1016.0-1073.0-1071.1-1071.1-107
3 3 3 4 4 4

To
TR
CT| 0.07 | 0.12 | 0.32 | 0.10 | 0.23 | 1.57
r6.0'10'6.0'10'6.0'10' _|L1-1071.1-10]
INVECAE 3 3 4 4
CT| 0.07 | 0.12 | 0.34 - 035 | 2.72

CT is computational time in seconds

As can be seen from both Figure 3 and Table
3, very precise results are obtained, with the
average relative error around 0.6%, even with a
very small number of domain points and time
steps. However, significantly better results can be
achieved by increasing the number of domain
points and time steps, while still incurring very
low computational costs on a PC with modest
performance. Again, explicit methods struggle to
produce accurate results unless the number of
time steps is very high relative to the number of
domain points.

In the third problem, transient 1D heat
conduction through a non-homogeneous media is
analysed. Its characteristics are given as follows:

y € [0,1], p(y) =1,
c(y) = expB3y), k() =exp@y).
Initial and Dirichlet boundary conditions are
given as:
uly;0) =1, u(0;t) =1, u(L;t) = 20.

20

analytical 5
o FPM

15

10+

e,
Vv=re =

¢
0 0.2 0.4 0.6 0.8 1

Figure 4 — Comparison of analytical and FPM
solutions for the third example

Analytical solution is given in [11], while the
FPM results are presented in Fig. 4 and Table 4.

Table 4 — The average values of ry error and
computational times for the third example

n 10 100

n, | 10° | 10* | 10° | 10° | 10* | 10°

1.5-1071.5-10° 3.6-107

FE To - 2 2 - - 4
CT| - 0.44 | 2.69 - - ]15.10
1.5:1071.5:10 3.6:107

RK4 0 - 2 2 - - 4
CT| - 0.62 | 5.06 - - |18.46

1.5-10°

AB3| | ~ ) ’ ) ) )

CT - - 2.37 - - -
1.5-1071.5-1071.5-1071.5-1074.9-1073.8-10"

BE ) 2 2 2 3 4 4

CT) 0.11| 029 | 235 | 0.13 | 1.05 [ 14.88

1.7-10171.5-1071.5-1079.8-1074.9-10713.7-10
16 2 2 2 3 4 4

CT) 0.11 | 031 | 242 | 0.13 | 0.98 |14.17

TR

1.5-1071.5-107 3.7-10]
16 - 2 2 4

CT| - 0.30 | 2.42 - - 1547

AM3

CT is computational time in seconds

Figure 4 shows the comparison between the
analytical solution and the numerical solution
obtained using FPM in combination with the
Trapeze Rule scheme for the third problem at
several time points, with 50 uniformly distributed
domain points and a time step of 10, while Table
4 presents the values of 1, error averaged per time
step within the interval t € [0,1]. The results
indicate that highly accurate results can be
obtained using this approach even with a
relatively small number of domain points and time
steps  when implicit schemes are applied.
Conversely, explicit schemes can also yield very
good results, but only when a large number of
time steps is used.

In the fourth example, the first in 2D, transient
heat conduction across a homogeneous, isotropic
domain defined by x € [0,1] and y € [0,1] is
analysed. The density p and specific heat capacity
¢ are both set to 1, while the thermal conductivity
tensor k is equal to the Kronecker delta function.
The analytical solution for this problem is
provided in [12]. All boundaries are time-
dependent Dirichlet boundaries, except x =1
where a Neumann condition is imposed.
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Expressions for all four boundary conditions, as
well as for the initial condition (for t, = 0), are
derived from the analytical solution.

Fig. 5 shows a comparison between the
analytical solution, the numerical results obtained
using the Method of Fundamental Solutions
(MFS) presented in [12], and the numerical results
obtained using FPM with the FE scheme and a
time step of 10™. The results are presented along
the Neumann boundary at t = 1.5. Numerical
results were obtained using 121 uniformly
distributed points. Two FPM solutions are shown
in Fig. 5 — one where 40 of the 121 points are
located on the boundaries, and another where no
points are placed directly on the boundaries. An
error of 1, = 0.00253 was obtained when points
were placed directly on the boundaries, while an
error of r, = 0.00165 was obtained when no
points were placed on the boundaries. For both
point distribution approaches, the FPM results are
very good. Figure 5 also suggests that FPM
provides slightly better accuracy than the MFS.

0.060
0.058¢
= 0.056¢
'_;‘
=
= 0.054}
3 -
analythical
0.052} o MFS
e FPM — points on boundaries
0-050!’ o FPM - cell-centered form ‘!

0 0.2 0.4 0.6 0.8 1
Y

Figure 5 — Comparison of analytical MFS, and FPM
solutions for the fourth example at x = 1 and
t=15

The same problem was solved using 144
domain points. The temperature distribution over
the domain at t =1 is shown in Fig. 6, where
three FPM solutions are presented:

e a uniform point distribution with 44 points

set directly on the boundaries,

e a random point distribution with 44 points

set directly on the boundaries, and

e a uniform point distribution with no points

placed directly on the boundaries.

When compared with the analytical solution
(Fig. 6a), all three FPM configurations (Fig. 6b)
yield very good results.

For the fourth example, Table 5 presents the
values of the r, error at t =1 for the results
obtained using FPM with different ODE solvers
and varying numbers of uniformly distributed
points and time steps. In all cases, some points
were positioned on the boundaries. The results
show that accurate solutions can be achieved even
with a relatively small number of domain points.
However, as observed in the previous examples,
implicit solvers appear to perform better, as they
can produce accurate results even when the
number of time steps is not significantly greater
than the number of domain points. Furthermore,
increasing the number of domain points and time
steps reduces the relative error, confirming the
convergence of the FPM.

a)
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P /750
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Yy 00 T

Figure 6 — Results of the fourth example at t = 1:
a) Analytical result; b) FPM results

Table 5—Relative errorr, att = 1 and computational
times for the fourth example

n 10x10 100x100
n, | 10° | 10* | 10° | 10° | 10* | 10°

o ) 3.1;10'3.1510' ) ) 2.5;110'
FE

CT| - 5.00 | 49.29 - - 1492.77

r _|3.2:1013.1:107 28107
RK4 0 3 3 4

CT| - 23.78(135.37] - - 1879.53

. ) 3.2510'3.1‘%10' ) ) 2.74-110'
AB3| °

CT| - 8.66 | 40.65 - - 1205.03

4.1-1073.2-1013.1:1072.4-1074.3-1072.7-10]

BE L) 3 3 3 3 4 4

CT| 0.59 | 9.56 [46.03| 5.17 [49.42|467.35
3.1-1073.1-1013.1-1072.5-1072.5-1072.5-107
3 3 3 4 4 4

To

CT| 055 | 7.02 |40.43| 3.68 | 35.40|334.43
3'15103'1510-3'1510- 2.5410'2.5410'

TR

To

CT| 0.57 | 6.83 |46.53| - |60.69|585.18
CT is computational time in seconds

AM3

In the fifth example, homogeneous and non-
homogeneous isotropic and anisotropic media are
analysed. The domain is square-shaped with a

side length of L. The initial and Dirichlet
boundary conditions are defined as follows:

ul;v;0) =ulx;0;t) =1, ulx;L;t) =20.

A symmetric boundary condition is imposed
on the remaining boundaries (see [2]).

The media characteristics are as follows:

p(;y) =1, clx;y) = exp(26y/L),

k(x; y) = exp(28y/L) []f“ k“],
kZl

k22

where for the isotropic media Eij = §&;;, for the

anisotropic kqyq = ky, = 2, ki, = kyy =1, for
the homogenous media § = 0, and for the non-
homogenous media § = 1.5.

Analytical solution is given in [13].

The comparison between the analytical
solution and the FPM combined with the BE
scheme is presented in Figure 7. The results are
demonstrated for x = L/2, but they are identical
across any parallel plane. The problem was solved
using a 15x15 grid over the t € [0,1] with a time
step of 10,
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Figure 7 — Analytic and FPM results of the fifth
example: a) homogenous isotropic media; b) non-
homogenous isotropic media; ¢) non-homogenous
anisotropic media; d) homogenous anisotropic media

7 CONCLUSIONS

Through various 1D and 2D examples, the
suitability of the FPM for solving general heat
conduction problems has been confirmed. The
FPM demonstrates strong compatibility —with
different ODE solvers. Its significant advantages
include the symmetry and sparsity of the resulting
matrices, as well as the linearity of the trial and
test functions. All these features contribute to the
computational efficiency of the method, as
evidenced by very low computational times, even
with a large number of domain points and time
steps, on a low-performance computer used in this
study.

All six algorithms developed in this research
can be executed with an approximate
computational complexity of O(n.n?). For the
specific problems analysed in this paper, it was
shown that implicit methods can perform as
efficiently as the simple Forward Euler method

while maintaining the same level of accuracy.
Moreover, for stiff problems, explicit methods fail
to produce satisfactory results unless the number
of time steps is significantly greater than the
number of domain points, whereas implicit
methods provide accurate results even with a
relatively small number of time steps.

The presence of non-homogeneity and
anisotropy does not introduce difficulties for
FPM. Although none of the problems in this paper
involve heat sources, their presence would not
pose any complications either — the first term on
the right-hand side of Eq. (4) would simply
become non-zero and could be evaluated
straightforwardly using Gaussian quadratures.

8 REFERENCES

[1] Dong, L., Yang, T., Wang, K., & Atluri, S. N.
(2019). A new fragile points method (FPM) in
computational mechanics, based on the concepts
of point stiffnesses and numerical flux
corrections. Engineering Analysiswith Boundary
Elements, 107, 124-133.
https://doi.org/10.1016/j.enganabound.2019.07.00
9

[2] Guan, Y., Gryjicic,R., Wang, X., Dong, L., &
Atluri, S. N. (2020). A new meshless “fragile
points method” and a local variational iteration
method for general transient heat conductionin
anisotropic nonhomogeneous media. Part I:
Theory and implementation. Numerical Heat
Transfer, Part B: Fundamentals, 78(2), 71-85.
https://doi.org/10.1080/10407790.2020.1747278

[3] Guan, Y., Grujicic,R.,Wang, X., Dong, L., &
Atluri, S. N. (2020). A new meshless “fragile
points method” and a local variational iteration
method for general transient heat conductionin
anisotropic nonhomogeneous media. Part II:
Validation and discussion. Numerical Heat
Transfer, Part B: Fundamentals, 78(2), 86-109.
https://doi.org/10.1080/10407790.2020.1747283

[4] Guan, Y., Gryji¢i¢, R., Wang, X, Dong, L., &
Atluri, S. N. (2020, November 16-19). Anew and
efficient meshless computational approach for
transientheat conduction in anisotropic
nonhomogeneous media: Fragile points method
and local variational iteration scheme. In
Proceedings of the ASME 2020 International
Mechanical Engineering Congress and
Exposition (IMECE2020), Portland, OR, USA.

44


https://doi.org/10.1016/j.enganabound.2019.07.009
https://doi.org/10.1016/j.enganabound.2019.07.009
https://doi.org/10.1080/10407790.2020.1747278
https://doi.org/10.1080/10407790.2020.1747283

R. Grujici¢

[5]

[6]

[7]

[8]

[°]

[10]

[11]

[12]

[13]

Subani, N., Jamaluddin, F., Mohamed, M. A. H.,
& Badrolhisam, A. D. H. (2020). Analytical
solution of homogeneous one-dimensional heat
equation with Neumann boundary conditions.
Journal of Physics: Conference Series, 1551,
012002.
https://doi.org/10.1088/1742-6596/1551/1/012002

Guan, Y., & Atluri, S. N. (2021). Meshless fragile
points methods based on Petrov—Galerkin weak-
forms for transient heat conduction problemsin
complex anisotropic honhomogeneous media.
International Journal for Numerical Methods in
Engineering, 122(16), 4055-4092.
https://doi.org/10.1002/nme.6692

Gruyjici¢, R. (2023). Meshless fragile points
method (FPM) for fluid flow around aerodynamic
shapes and heat distribution problems [Doctoral
dissertation, University of Belgrade, Faculty of
Mechanical Engineering].

Arnold, D. N., Brezzi, F., Cockburn, B., &
Marini, L. D. (2002). Unified analysis of
discontinuous Galerkin methods for elliptic
problems. SIAM Journal on Numerical Analysis,
39,1749-1779.
https://doi.org/10.1137/S0036142901384162

Wang, X. (2019). Optimized Picard iteration
methods for nonlinear dynamical systems with
non-smooth nonlinearities, and orbital mechanics
[Doctoral dissertation, Texas Tech University].

Mackowski, D. W. (2011). Conduction heat
transfer: Notes for MECH 7210. Auburn, AL:
Mechanical Engineering Department, Auburn
Uniwersity.

Sladek, V., Sladek, J., Tanaka, M., & Zhang, C.
(2005). Transient heat conduction in anisotropic
and functionally graded media by local integral
equations. Engineering Analysis with Boundary
Elements, 29, 1047-1065.
https://doi.org/10.1016/j.enganabound.2005.05.01

1

Johansson, B. T., Lesnic, D., & Reewe, T. (2011).
A method of fundamental solutions for two-
dimensional heat conduction. International
Journal of Computer Mathematics, 88(8), 1697—
1713.
https://doi.org/10.1080/00207160.2010.522233

Gambaruto, A. M. (2015). Computational
haemodynamics of small vessels using the
moving particle semi-implicit (MPS) method.
Journal of Computational Physics, 302, 68—96.
https://doi.org/10.1016/].jcp.2015.08.039

45


https://doi.org/10.1088/1742-6596/1551/1/012002
https://doi.org/10.1002/nme.6692
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1016/j.enganabound.2005.05.011
https://doi.org/10.1016/j.enganabound.2005.05.011
https://doi.org/10.1080/00207160.2010.522233
https://doi.org/10.1016/j.jcp.2015.08.039

