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Abstract: According to recent studies, the Fragile Points Method (FPM) has emerged as a highly promising technique 

for addressing problems related to heat conduction analysis. This paper further develops and extends the investigation 

of FPM by implementing and comparing several explicit and implicit time integration schemes for solving the resulting 
systems of ordinary differential equations (ODEs). In total, six fully discrete formulations of the general heat 
conduction equation are derived and presented. The study includes a detailed assessment of each algorithm’s 
computational complexity, execution time, and relative numerical accuracy, providing a comprehensive evaluation of 
their performance. The convergence and stability of the FPM approach were verified through multiple benchmark 
problems with known analytical solutions in both one and two dimensions. Furthermore, it was demonstrated that the  

presence of non-homogeneity and anisotropy in the analysed media does not introduce additional difficulties for the 
method. When compared with explicit techniques, the implicit formulations proved to be more efficient for stiff 
problems, achieving stable solutions while maintaining comparable computational costs. 
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Apstrakt: Skorija istraživanja su pokazala da se Fragile Points metoda (FPM) pokazala kao vеoma pеrspеktivna 

tеhnika za rjеšavanjе problеma koji sе odnosе na analizu provođеnja toplotе. Ovaj rad za cilj ima dalji razvoj i širenje 
istraživanja u pravcu primjene FPM za konkretan problem uvođenjem i međusobnim poređenjem nekoliko eksplicitnih i 
implicitnih šema za vremensku integraciju kako bi se riješio rezultujući sistem običnih diferencijalnih jednačina (ODJ). 
Ukupno je razvijeno i predstavljeno šest potpuno diskretizovanih formi opšte jednačine provođenja toplote. Istraživanje 

obuhvata detaljnu procjenu računske efikasnosti, vremena izvršenja koda i relativne numeričke preciznosti za svaki od 
algoritama, pružajući sveobuhvatnu procjenu njihovih karakteristika. Konvergentnost i stabilnost pristupa na bazi FPM 
su verifikovani rješavanjem nekoliko problema sa poznatim analitičkim rješenjima u jednoj i dvije dimenzije. Pored 
toga, pokazano je da prisustvo nehomogenosti i anizotropnosti analiziranih sredina ne predstavlja nikakvu prepreku za 
posmatranu metodu. U poređenju sa eksplicitnim tehnikama, implicitne metode su se pokazale kao efikasnije za tzv. 
krute (stiff) probleme, dajući stabilne rezultate uz očuvanje niskih računskih troškova. 
 

Ključne riječi: Fragile Points metoda, jednačina provođenja toplote, obična diferencijalna jednačina  

 

1 INTRODUCTION 

Although many physical processes are well 

described by partial differential equations (PDEs), 

analytical solutions are unavailable for most of 

them. Moreover, analytical results are often 

restricted to simplified models that do not always 

accurately represent the real behaviour of the 

system. To address these limitations, numerous 

numerical methods for solving PDEs and 
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performing simulations have been developed over 

the past several decades. 

One of the more recent approaches is the 

Fragile Points Method (FPM), introduced by 

Dong et al. [1]. While retaining the essential 

advantages over the classical mesh-based 

methods, it also offers computational 

improvements compared to other meshless 

approaches. Its main feature lies in the use of 

discontinuous polynomial trial functions, which 

allow for easy, precise, and efficient integration 

using simple Gaussian quadratures. 

So far, the FPM has shown great potential for 

solving various types of problems, including heat 

conduction problems, as reported in several 

studies [2–6]. 

This paper extends previous research by 

focusing on the compatibility of FPM with 

various explicit and implicit solvers, as well as on 

the analysis of their accuracy, computational cost, 

and real computational times. Building upon the 

semi-discrete formulation presented in [2,6], this 

work develops fully discrete forms using three 

explicit and three implicit methods. The 

performance of the proposed approaches, along 

with a detailed comparison between explicit and 

implicit solvers combined with FPM, represents 

the main focus of this study. 

 

2  GOVERNING EQUATION, BOUNDARY 

CONDITIONS AND INITIAL CONDITION 

The partial differential equation (PDE) 

governing transient heat conduction in 

anisotropic, nonhomogeneous media is given by: 

  
  

  
   ,   -     (1) 

where:  ( ) is density,  ( ) is a specific heat 

capacity,  (   ) is temperature field,  ( ) is a 

thermal conductivity tensor,  (   ) is a density of 

heat sources,   is a gradient operator,   is a 

position vector, and   is time. 

In order to complete the equation (1), 

boundary conditions have to be specified. 

Dirichlet and Neumann conditions are typical for 

heat conduction equation, and given in the 

following forms: 

          

,   -                
 (2) 

where:   represents the outer normal vector of the 

domain. 

The initial condition is given as: 

 (   )|     (   )  (3) 

3  SEMI-DISCRETE FORM OF THE 

GOVERNING EQUATION BY 

MESHLESS FRAGILE POINTS 

METHOD 

In order to obtain the full-discrete form of the 

governing equation, it has to be noted that one 

approach has to be employed in order to deal with 

the discretisation in the space domain, while some 

other ODE solver has to be introduces in order to 

deal with the discretisation in the time domain. 

One of the latest approaches used for the 

discretisation of the heat conduction equation in 

the space domain is meshless Fragile Points 

Method (FPM). Its potential for solving those 

kind of problems was firstly explored through 

papers [2,3], while further researches and analyses 

given in [5] confirmed its superiority for this kind 

of problem in comparison to any other numerical 

approach known so far. That is why the FPM, 

specifically the FPM-Primal, was also chosen as 

the starting point of this study to derive the semi-

discrete form of the Eq. (1). 

Trial and test functions are required to support 

the semi-discrete form. Although different choices 

are possible, in this research the test functions are 

chosen to be identical to the trial functions. This 

approach ensures the symmetry of the matrices. 

One of the main advantages of the Fragile 

Points Method (FPM) is the ability to employ 

piecewise polynomial functions as trial functions, 

with the key benefit being the ease and accuracy 

of numerical integration using simple Gaussian 

quadratures. In this study, as low as first-order 

polynomial is used, providing improved 

computational efficiency while maintaining 

accurate results. 

To define the trial functions, the domain must 

be divided into a number of non-overlapping 

polygons (subdomains) that together cover the 

entire domain, with exactly one discretization 

point located within each subdomain (Fig. 1). 
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Figure 1 – Domain partitioning into subdomains in 

FPM 

Each subdomain has its own shape function, 

defined such that the trial function at any point 

within the subdomain depends on its position 

vector, the function value at a specific subdomain 

point (point    for subdomain    in Fig. 1), and 

the gradient of the function at that specific point 

(  ). On the other side, the gradient of the 

function at the specific point (  ) depends on the 

function values at the surrounding (neighbouring) 

points (for   , these are the black points in Fig. 1). 

All that make the FPM truly meshless. 

Process of forming of semi-discrete form of 

the general heat conduction equation on the basis 

of FPM is explained in details in [2,6]. Following 

on [6], final form of the general heat conduction 

equation has the following shape: 

∑∫    
   

  
  

    

 ∑ ∫(    )      

    

 ∑ ∫( ⟦  ⟧)  *  +  

     

 ∑ ∫*  +⟦   ⟧  

     

 ∑ ∫ ( (*   +  
  

  
⟦  ⟧))  ⟦ ⟧  

     

 ∑ ∫ ⟦ (    
  

  
   )⟧ * +  

     

 ∑ ∫     

    

 ∑ ∫ (⟦ (
  

  
   )⟧ * +  *  +⟦   ⟧)   

     

 ∑ ∫      

     

  

(4) 

 

where:    is the trial function,   is the test 

function, ⟦ ⟧ and * + denote the jump and 

average operators, respectively,    and    are the 

penalty parameters on internal and Dirichlet 

boundaries, respectively, and    is edge-size 

parameter ([1,2,7]). 

Following [1,2], the trial function can be 

expressed in the following form: 

  ( )           (5) 

while its gradient at    point takes the following 

shape: 

  |       (6) 

where: 

  (    )
   ,    -  (   )  

  (   )
  
  [

      
      
     
      

]

  (   )

  

  ,                -   

  ,       -   

By introducing the heat conduction and 

stiffness matrices, Eq. (4) can be rewritten in a 

compact form: 

∑   ̇  ∑(        ) 

 ∑(        )  
(7) 

or more simply: 

  ̇        (8) 

where:   represents the global heat capacity 

matrix,   is the global thermal conductivity 

matrix,   is the vector of nodal temperatures,  ̇ is 

a time derivative vector of the nodal temperatures, 

and   is the heat flux vector.   and   are constant, 

while the vector   can generally vary, depending 

on the heat sources and boundary conditions. 

After introducing the trial and test functions, 

given by Eq. (5), into the semi-discrete form of 

the governing Eq. (1), expressed by Eq. (4), the 

individual terms of the Eq. (7) can be obtained at 
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the subdomain level in a way that is presented in 

details in [2,6]. 

The convergence and stability of the FPM for 

solving the general heat conduction equation have 

been demonstrated in previous studies (see 

[3,5,6]). 

 

4  FULL-DISCRETE FORMS OF THE 

GOVERNING EQUATION BY 

MESHLESS FRAGILE POINTS 

METHOD AND VARIOUS ODE 

SOLVERS 

To complete the numerical solution, i.e., to 

obtain the fully discrete form of the heat 

conduction equation in anisotropic, non-

homogeneous media, ODE (8) must be solved. A 

variety of approaches can be used. One such 

method is the Local Variational Iteration Method 

(LVIM), developed in [8], which has been shown 

to be highly compatible with FPM in [3,5]. 

For this research, however, three explicit and 

three implicit solvers were considered, namely: 

 Forward Euler (FE), 

 Runge-Kutta 4th order (RK4), 

 Adams-Bashforth 3th order (AB3), 

 Backward Euler (BE), 

 Trapezoidal Rule (TR) and 

 Adams-Moulton 3th order (AM3). 

Based on the concept of these six methods in 

combination with ODE (8), the fully discrete 

forms of the governing equation are summarized 

in Table 1. 

 

Table 1 – The full-discrete forms of the governing equation obtained using FPM and six ODE solvers  

E
x

p
li

c
it

 

FPM + Forward Euler 
(FE) 

             

FPM + Runge-Kutta 4
th

 order 
(RK4) 

        
  

 
   (             ) 

 
         
             (          )

             (          )

          (       )

 

FPM + Adams-Bashforth 
method 3th order 

(AB3) 
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   )  (      

      ) 

FPM + Trapeze Rule 
(TR) 

        
  

 
(       ) 
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    )

  

(   
  

 
(    

      )) 

FPM + Adams-Moulton 

method 3th order 
(AM3) 

               (like BE) 
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   is a time step 
   is vector of temperatures in specified nodes at    

     is vector of temperatures in specified nodes at            
  is a unit matrix of size     

    
  (      ) 

 

5  TIME COMPLEXITY OF THE 

PROPOSED ALGORITHMS 

The formation of the   and   matrices is not 

time-consuming in FPM. By analysing the 

procedure used to construct them, it can be 

concluded that their formation can be performed 

with an approximate complexity of  ( ) , where   

is the number of nodes, i.e., the number of domain 

points. However, the inversion of the   matrix can 

be time-consuming. Using Gaussian elimination, 

this can be achieved with a complexity of  (  ). 

However, since FPM yields a positive definite, 

symmetric, sparse, and well-structured matrix, 

advanced solvers such as sparse Cholesky or 

multigrid methods can be applied, drastically 

reducing the computational cost – sometimes even 

approaching linear complexity with respect to  . 

In all six algorithms listed in Table 1, the 

multiplication of an     matrix with a vector of 

length   is the most computationally intensive 

operation within each time step, with complexity 

 (  ) per step. Consequently, the overall 

complexity of all six approaches can be roughly 

estimated as  (   
 ), where    is the number of 

time steps. This is more computationally 

demanding than the inversion of the   matrix, 

regardless of the number of time steps, and is 

therefore considered the dominant operation. 

However, in practice, the six algorithms don’t 

have identical computational costs. For example, 

in Euler methods, the multiplication of an     

matrix with an     matrix occurs twice per time 

step, while in the 4th-order Runge-Kutta method 

it occurs five times, so the latter is expected to be 

approximately 2.5 times slower. 

6  NUMERICAL EXAMPLES 

The capabilities of FPM are demonstrated 

through several numerical examples in 1D and 

2D, for which analytical solutions are available in 

the literature. None of them involve internal heat 

sources. For each example, a comparison of the 

six ODE solvers was performed in terms of 

accuracy, computational time, and ability to solve 

the problem. Point distributions were mostly 

uniform, while both the number of points and the 

number of time steps were varied. Accuracy was 

estimated based on the relative error value 

calculated using the Lebesgue norm: 

   
‖    ‖  

‖ ‖  
 ‖ ‖   √(∫  

   

 

)  (9) 

Previous studies [3,6] provide an overview of 

the choice of penalty parameters. In these works, 

   values were estimated through a number of 

examples, considering a wide range of penalty 

parameters values, typically from 10-5 to 105. 

Based on this previous experience, for all 1D 

problems, penalty parameters of        and 

       were used, whereas for all 2D 

problems, the values         were adopted. 

Apart from the penalty parameter itself, 

stabilization is influenced by the dimensionality 

of the element boundaries. In 1D, boundary 

reduces to point, providing very little “contact 

area” for flux stabilization. Consequently, higher 

penalty parameters are typically required in 1D 

problems compared to 2D or 3D. 

As for the edge size parameter   , a unit value 

was taken for 1D problems, while the boundary 

length was taken for 2D problems. 

All codes were executed on a PC of the 

following specifications: Intel(R) Core(TM) i3-

9100T CPU @ 3,10 GHz; RAM 8,00 GB; Intel(R) 

UHD Graphics 630. 

The first example considers 1D transient heat 

conduction through a homogeneous medium with 

  ,   -. The thermal diffusivity is set to 1. The 

initial and mixed boundary conditions are 

specified as follows:  (   )      (   )  

   (   )   . 

The analytical solution is provided in [9]. 
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Fig. 2 illustrates the comparison between the 

analytical solution and the numerical solution 

obtained using FPM in combination with the 

Backward Euler scheme for the first problem at 

several time points, with 50 uniformly distributed 

domain nodes and a time step of 10-4. Table 2 

presents the values of    error averaged per time 

step within the interval   ,   -. 

As can be seen from Fig. 2, this problem is 

stiff. Consequently, explicit methods struggle to 

produce accurate results unless a very large 

number of time steps is used relative to the 

number of nodes. In contrast, implicit methods 

can provide highly accurate results even with a 

small number of time steps, although accuracy 

improves further as the number of time steps 

increases. Table 2 also confirms that the 

computational times for the FE and BE methods 

are roughly the same and lower than that of the 

RK4 method. 

 

Figure 2 – Comparison of analytical and FPM 
solutions for the first example 

Table 2 – The average values of    error and 

computational times for the first example  

  10 100 

   10
3
 10

4
 10

5
 10

3
 10

4
 10

5
 

FE 
   - 

3.0·10
-

2
 

3.0·10
-

2
 

- - 
3.2·10

-

4
 

   - 0.11 0.47 - - 3.63 

RK4 
   - 

3.0·10
-

2
 

3.0·10
-

2
 

- - 
3.2·10

-

4
 

   - 0.13 0.67 - - 4.26 

AB3 
   - - 

3.0·10
-

2
 

- - - 

   - - 0.45 - - - 

BE 
   

3.1·10
-

2
 

3.0·10
-

2
 

3.0·10
-

2
 

2.2·10
-

3
 

5.2·10
-

4
 

3.6·10
-

4
 

   0.06 0.09 0.41 0.09 0.47 3.48 

TR 
   

3.1·10
-

2
 

3.0·10
-

2
 

3.0·10
-

2
 

4.4·10
-

3
 

3.6·10
-

4
 

3.4·10
-

4
 

   0.07 0.10 0.41 0.08 0.43 3.28 

AM3 
   - 

3.0·10
-

2
 

3.0·10
-

2
 

- - 
3.4·10

-

4
 

   - 0.11 0.44 - - 3.95 

   is computational time in seconds 

In the second 1D problem, transient heat 

conduction through а homogeneous media in the 

domain   ,   - is analysed. Тhe thermal 

diffusivity is set to 1. In this case, both boundaries 

are adiabatic (zero-Neumann boundary condition). 

The initial condition is specified as follows: 

 (   )  {
         

 

 

   
 

 
    

  

The analytical solution is provided in [10]. 

Fig. 3 shows the comparison between the 

analytical solution and the numerical solution 

obtained using FPM in combination with the 

Euler Forward scheme for the second problem at 

several time points, with 50 uniformly distributed 

domain nodes and a time step of 10-4. Table 3 

presents the values of    error averaged per time 

step within the interval   ,   -. 

 

Figure 3 – Comparison of analytical and FPM 

solutions for the second example 

Table 3 – The average values of    error and 

computational times for the second example  

  10 100 

   10
3
 10

4
 10

5
 10

3
 10

4
 10

5
 

FE 
   - 

6.0·10
-

3
 

6.0·10
-

3
 

- - 
1.0·10

-

4
 

   - 0.17 0.36 - - 2.43 
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RK4 
   - 

6.0·10
-

3
 

6.0·10
-

3
 

- - 
1.0·10

-

4
 

   - 0.16 0.55 - - 2.97 

AB3 
   - 

6.0·10
-

3
 

6.0·10
-

3
 

- - 
1.1·10

-

4
 

   - 0.12 0.30 - - 1.30 

BE 
   

6.4·10
-

3
 

6.0·10
-

3
 

6.0·10
-

3
 

6.8·10
-

4
 

1.7·10
-

4
 

1.2·10
-

4
 

   0.06 0.11 0.29 0.10 0.31 2.24 

TR 
   

6.0·10
-

3
 

6.0·10
-

3
 

6.0·10
-

3
 

3.0·10
-

4
 

1.1·10
-

4
 

1.1·10
-

4
 

   0.07 0.12 0.32 0.10 0.23 1.57 

AM3 
   

6.0·10
-

3
 

6.0·10
-

3
 

6.0·10
-

3
 

- 
1.1·10

-

4
 

1.1·10
-

4
 

   0.07 0.12 0.34 - 0.35 2.72 

   is computational time in seconds 
 

As can be seen from both Figure 3 and Table 

3, very precise results are obtained, with the 

average relative error around 0.6%, even with a 

very small number of domain points and time 

steps. However, significantly better results can be 

achieved by increasing the number of domain 

points and time steps, while still incurring very 

low computational costs on a PC with modest 

performance. Again, explicit methods struggle to 

produce accurate results unless the number of 

time steps is very high relative to the number of 

domain points. 

In the third problem, transient 1D heat 

conduction through a non-homogeneous media is 

analysed. Its characteristics are given as follows: 

  ,   -  ( )    

 ( )     (  )   ( )     (  )  
 

Initial and Dirichlet boundary conditions are 

given as: 

  (   )     (   )     (   )      

 

Figure 4 – Comparison of analytical and FPM 
solutions for the third example 

Analytical solution is given in [11], while the 

FPM results are presented in Fig. 4 and Table 4. 

Table 4 – The average values of    error and 

computational times for the third example  

  10 100 

   10
3
 10

4
 10

5
 10

3
 10

4
 10

5
 

FE 
   - 

1.5·10
-

2
 

1.5·10
-

2
 

- - 
3.6·10

-

4
 

   - 0.44 2.69 - - 15.10 

RK4 
   - 

1.5·10
-

2
 

1.5·10
-

2
 

- - 
3.6·10

-

4
 

   - 0.62 5.06 - - 18.46 

AB3 
   - - 

1.5·10
-

2
 

- - - 

   - - 2.37 - - - 

BE 
   

1.5·10
-

2
 

1.5·10
-

2
 

1.5·10
-

2
 

1.5·10
-

3
 

4.9·10
-

4
 

3.8·10
-

4
 

   0.11 0.29 2.35 0.13 1.05 14.88 

TR 
   

1.7·10
-

2
 

1.5·10
-

2
 

1.5·10
-

2
 

9.8·10
-

3
 

4.9·10
-

4
 

3.7·10
-

4
 

   0.11 0.31 2.42 0.13 0.98 14.17 

AM3 
   - 

1.5·10
-

2
 

1.5·10
-

2
 

- - 
3.7·10

-

4
 

   - 0.30 2.42 - - 15.47 

   is computational time in seconds 
 

Figure 4 shows the comparison between the 

analytical solution and the numerical solution 

obtained using FPM in combination with the 

Trapeze Rule scheme for the third problem at 

several time points, with 50 uniformly distributed 

domain points and a time step of 10-4, while Table 

4 presents the values of    error averaged per time 

step within the interval   ,   -. The results 

indicate that highly accurate results can be 

obtained using this approach even with a 

relatively small number of domain points and time 

steps when implicit schemes are applied. 

Conversely, explicit schemes can also yield very 

good results, but only when a large number of 

time steps is used. 

In the fourth example, the first in 2D, transient 

heat conduction across a homogeneous, isotropic 

domain defined by   ,   - and   ,   - is 

analysed. The density   and specific heat capacity 

  are both set to 1, while the thermal conductivity 

tensor   is equal to the Kronecker delta function. 

The analytical solution for this problem is 

provided in [12]. All boundaries are time-

dependent Dirichlet boundaries, except     

where a Neumann condition is imposed. 
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Expressions for all four boundary conditions, as 

well as for the initial condition (for     ), are 

derived from the analytical solution. 

Fig. 5 shows a comparison between the 

analytical solution, the numerical results obtained 

using the Method of Fundamental Solutions 

(MFS) presented in [12], and the numerical results 

obtained using FPM with the FE scheme and a 

time step of 10-4. The results are presented along 

the Neumann boundary at        . Numerical 

results were obtained using 121 uniformly 

distributed points. Two FPM solutions are shown 

in Fig. 5 – one where 40 of the 121 points are 

located on the boundaries, and another where no 

points are placed directly on the boundaries. An 

error of            was obtained when points 

were placed directly on the boundaries, while an 

error of            was obtained when no 

points were placed on the boundaries. For both 

point distribution approaches, the FPM results are 

very good. Figure 5 also suggests that FPM 

provides slightly better accuracy than the MFS. 

 

Figure 5 – Comparison of analytical MFS, and FPM 

solutions for the fourth example at     and 

      

The same problem was solved using 144 

domain points. The temperature distribution over 

the domain at     is shown in Fig. 6, where 

three FPM solutions are presented: 

 a uniform point distribution with 44 points 

set directly on the boundaries, 

 a random point distribution with 44 points 

set directly on the boundaries, and 

 a uniform point distribution with no points 

placed directly on the boundaries. 

When compared with the analytical solution 

(Fig. 6a), all three FPM configurations (Fig. 6b) 

yield very good results. 

For the fourth example, Table 5 presents the 

values of the    error at     for the results 

obtained using FPM with different ODE solvers 

and varying numbers of uniformly distributed 

points and time steps. In all cases, some points 

were positioned on the boundaries. The results 

show that accurate solutions can be achieved even 

with a relatively small number of domain points. 

However, as observed in the previous examples, 

implicit solvers appear to perform better, as they 

can produce accurate results even when the 

number of time steps is not significantly greater 

than the number of domain points. Furthermore, 

increasing the number of domain points and time 

steps reduces the relative error, confirming the 

convergence of the FPM. 

 

a) 

 

b) 
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Figure 6 – Results of the fourth example at    : 

a) Analytical result; b) FPM results 
 

Table 5 – Relative error    at     and computational 
times for the fourth example  

  10×10 100×100 

   10
3
 10

4
 10

5
 10

3
 10

4
 10

5
 

FE 
   - 

3.1·10
-

3
 

3.1·10
-

3
 

- - 
2.5·10

-

4
 

   - 5.00 49.29 - - 492.77 

RK4 
   - 

3.2·10
-

3
 

3.1·10
-

3
 

- - 
2.8·10

-

4
 

   - 23.78 135.37 - - 879.53 

AB3 
   - 

3.2·10
-

3
 

3.1·10
-

3
 

- - 
2.7·10

-

4
 

   - 8.66 40.65 - - 205.03 

BE 
   

4.1·10
-

3
 

3.2·10
-

3
 

3.1·10
-

3
 

2.4·10
-

3
 

4.3·10
-

4
 

2.7·10
-

4
 

   0.59 9.56 46.03 5.17 49.42 467.35 

TR 
   

3.1·10
-

3
 

3.1·10
-

3
 

3.1·10
-

3
 

2.5·10
-

4
 

2.5·10
-

4
 

2.5·10
-

4
 

   0.55 7.02 40.43 3.68 35.40 334.43 

AM3 
   

3.1·10
-

3
 

3.1·10
-

3
 

3.1·10
-

3
 

- 
2.5·10

-

4
 

2.5·10
-

4
 

   0.57 6.83 46.53 - 60.69 585.18 

   is computational time in seconds 
 

In the fifth example, homogeneous and non-

homogeneous isotropic and anisotropic media are 

analysed. The domain is square-shaped with a 

side length of  . The initial and Dirichlet 

boundary conditions are defined as follows: 

 (     )   (     )     (     )      

A symmetric boundary condition is imposed 

on the remaining boundaries (see [2]). 

The media characteristics are as follows: 

 (   )       (   )     (    ⁄ )   

 (   )     (    ⁄ ) *
 ̂   ̂  
 ̂   ̂  

+  

where for the isotropic media  ̂      , for the 

anisotropic  ̂    ̂    ,  ̂    ̂    , for 

the homogenous media    , and for the non-

homogenous media      . 

Analytical solution is given in [13]. 

The comparison between the analytical 

solution and the FPM combined with the BE 

scheme is presented in Figure 7. The results are 

demonstrated for     ⁄ , but they are identical 

across any parallel plane. The problem was solved 

using a 15 15 grid over the   ,   - with a time 

step of 10-4. 

a) 

 
b) 
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c) 

 
d) 

 

Figure 7 – Analytic and FPM results of the fifth 
example: a) homogenous isotropic media; b) non-

homogenous isotropic media; c) non-homogenous 
anisotropic media; d) homogenous anisotropic media 

 

7 CONCLUSIONS 

Through various 1D and 2D examples, the 

suitability of the FPM for solving general heat 

conduction problems has been confirmed. The 

FPM demonstrates strong compatibility with 

different ODE solvers. Its significant advantages 

include the symmetry and sparsity of the resulting 

matrices, as well as the linearity of the trial and 

test functions. All these features contribute to the 

computational efficiency of the method, as 

evidenced by very low computational times, even 

with a large number of domain points and time 

steps, on a low-performance computer used in this 

study. 

All six algorithms developed in this research 

can be executed with an approximate 

computational complexity of  (   
 ). For the 

specific problems analysed in this paper, it was 

shown that implicit methods can perform as 

efficiently as the simple Forward Euler method 

while maintaining the same level of accuracy. 

Moreover, for stiff problems, explicit methods fail 

to produce satisfactory results unless the number 

of time steps is significantly greater than the 

number of domain points, whereas implicit 

methods provide accurate results even with a 

relatively small number of time steps. 

The presence of non-homogeneity and 

anisotropy does not introduce difficulties for 

FPM. Although none of the problems in this paper 

involve heat sources, their presence would not 

pose any complications either – the first term on 

the right-hand side of Eq. (4) would simply 

become non-zero and could be evaluated 

straightforwardly using Gaussian quadratures. 

 

8 REFERENCES 
 

[1] Dong, L., Yang, T., Wang, K., & Atluri, S. N. 
(2019). A new fragile points method (FPM) in 

computational mechanics, based on the concepts 
of point stiffnesses and numerical flux 
corrections. Engineering Analysis with Boundary 
Elements, 107, 124–133. 
https://doi.org/10.1016/j.enganabound.2019.07.00
9  

[2] Guan, Y., Grujicic, R., Wang, X., Dong, L., & 
Atluri, S. N. (2020). A new meshless “fragile 
points method” and a local variational iteration 
method for general transient heat conduction in 
anisotropic nonhomogeneous media. Part I: 
Theory and implementation. Numerical Heat 

Transfer, Part B: Fundamentals, 78(2), 71–85. 
https://doi.org/10.1080/10407790.2020.1747278  

[3] Guan, Y., Grujicic, R., Wang, X., Dong, L., & 
Atluri, S. N. (2020). A new meshless “fragile 
points method” and a local variational iteration 
method for general transient heat conduction in 

anisotropic nonhomogeneous media. Part II: 
Validation and discussion. Numerical Heat 
Transfer, Part B: Fundamentals, 78(2), 86–109. 
https://doi.org/10.1080/10407790.2020.1747283  

[4] Guan, Y., Grujičić, R., Wang, X., Dong, L., & 
Atluri, S. N. (2020, November 16–19). A new and 

efficient meshless computational approach for 
transient heat conduction in anisotropic 
nonhomogeneous media: Fragile points method 
and local variational iteration scheme. In 
Proceedings of the ASME 2020 International 
Mechanical Engineering Congress and 

Exposition (IMECE2020), Portland, OR, USA. 

 

 

https://doi.org/10.1016/j.enganabound.2019.07.009
https://doi.org/10.1016/j.enganabound.2019.07.009
https://doi.org/10.1080/10407790.2020.1747278
https://doi.org/10.1080/10407790.2020.1747283


R. Grujičić 
 

45 
 

[5] Subani, N., Jamaluddin, F., Mohamed, M. A. H., 

& Badrolhisam, A. D. H. (2020). Analytical 

solution of homogeneous one-dimensional heat 

equation with Neumann boundary conditions. 

Journal of Physics: Conference Series, 1551, 

012002. 

https://doi.org/10.1088/1742-6596/1551/1/012002 

[6] Guan, Y., & Atluri, S. N. (2021). Meshless fragile 
points methods based on Petrov–Galerkin weak-

forms for transient heat conduction problems in 
complex anisotropic nonhomogeneous media. 
International Journal for Numerical Methods in 
Engineering, 122(16), 4055–4092. 
https://doi.org/10.1002/nme.6692  

[7] Grujičić, R. (2023). Meshless fragile points 

method (FPM) for fluid flow around aerodynamic 
shapes and heat distribution problems [Doctoral 
dissertation, University of Belgrade, Faculty of 
Mechanical Engineering]. 

[8] Arnold, D. N., Brezzi, F., Cockburn, B., & 
Marini, L. D. (2002). Unified analysis of 

discontinuous Galerkin methods for elliptic 
problems. SIAM Journal on Numerical Analysis, 
39, 1749–1779. 
https://doi.org/10.1137/S0036142901384162  

[9] Wang, X. (2019). Optimized Picard iteration 
methods for nonlinear dynamical systems with 

non-smooth nonlinearities, and orbital mechanics 
[Doctoral dissertation, Texas Tech University]. 

[10] Mackowski, D. W. (2011). Conduction heat 
transfer: Notes for MECH 7210. Auburn, AL: 
Mechanical Engineering Department, Auburn 
University. 

[11] Sladek, V., Sladek, J., Tanaka, M., & Zhang, C. 
(2005). Transient heat conduction in anisotropic 
and functionally graded media by local integral 
equations. Engineering Analysis with Boundary 
Elements, 29, 1047–1065. 
https://doi.org/10.1016/j.enganabound.2005.05.01

1  

[12] Johansson, B. T., Lesnic, D., & Reeve, T. (2011). 
A method of fundamental solutions for two-
dimensional heat conduction. International 
Journal of Computer Mathematics, 88(8), 1697–
1713. 

https://doi.org/10.1080/00207160.2010.522233  

[13] Gambaruto, A. M. (2015). Computational 

haemodynamics of small vessels using the 

moving particle semi-implicit (MPS) method. 

Journal of Computational Physics, 302, 68–96. 

https://doi.org/10.1016/j.jcp.2015.08.039 

 

 

 

 

 

https://doi.org/10.1088/1742-6596/1551/1/012002
https://doi.org/10.1002/nme.6692
https://doi.org/10.1137/S0036142901384162
https://doi.org/10.1016/j.enganabound.2005.05.011
https://doi.org/10.1016/j.enganabound.2005.05.011
https://doi.org/10.1080/00207160.2010.522233
https://doi.org/10.1016/j.jcp.2015.08.039

